Recommender System Based on Algorithm of Bicluster Analysis RecBi
نویسندگان
چکیده
In this paper we propose two new algorithms based on biclustering analysis, which can be used at the basis of a recommender system for educational orientation of Russian School graduates. The first algorithm was designed to help students make a choice between different university faculties when some of their preferences are known. The second algorithm was developed for the special situation when nothing is known about their preferences. The final version of this recommender system will be used by Higher School of Economics.
منابع مشابه
CDUD ’ 11 – Concept Discovery in Unstructured Data
ing Concepts from Text Documents by Using an Ontology . . . . . . 21 Ekaterina Cherniak, Olga Chugunova, Julia Askarova, Susana Nascimento and Boris Mirkin Extraction and Use of Opinion Words for Three-Way Review Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Ilia Chetviorkin and Natalia Loukachevitch Constructing Galois La...
متن کاملAn Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms
With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...
متن کاملEvolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System
The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1202.2892 شماره
صفحات -
تاریخ انتشار 2011